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Summary -Two cyclohumulanoids, dl-bicyclohumulenone (4) and dl-africanol (L) were synthesized 

through newly developed conformationally selective transannular cyclization of humulene 9,10- 

epoxide (z). The epoxide 2 was converted to a bicyclohumulenediol diacetate $ in 70% yield by 

treatment with BF3*0Et2-Ac20, while treatment of 2 with trimethylsilyl trifluoromethansulfonate 

gave an africen-lo-01 (?a and Lb) in 8Oy yield. The two intermediates $ and $ furnished the 

natural products 5 and J in 30 and 8 % yield from2 respectively, 

Previously we reported') that humulene (j) is in equilibrium with its two stable CT and CC 

conformers and suggested that illudoids 2) and hirsutanoids might be biosynthetically derived 

from the CT and CC conformers respectively. 1) If one of the two stable conformers at 

equilibrium can be selectively converted to the corresponding biosynthetically derived 

cyclization products,3) the process will make our simulation of cyclohumulanoid biosynthesis 4) 

complete. Moreover, cyclization of a designated conformer via a conformationally selective 

transannular cyclization constitutes a new strategy in synthetic organic chemistry. 

Most_ cyclohumulanoids are considered to stem from 9,10-dihydrohumulen-9-yl cation. 5) 

However, selective protonaticn of the 9,10-double bond of humulene is so difficult 6) that we 

have attempted generation of the cation by cleavage of the epoxide ring of humulene 9,10- 

epoxide (2). 7) Since stable conformations of humulene epoxides are known to be very similar to 

those of the original olefin,'?) epoxide A undoubtedly exists as a mixture of CT and CC 

conformations at equilibrium. 

The epoxide 2 upon treatment with BF3*OEt2 (0.8 eq) in Ac20 at -50" followed by 1 hr at 

-20 OC gave rise to bicyclohumulenediol diacetate 3 ') (mp 140-2') in 70% yield. X-ray 

crystalographic analysis 10) revealed the configuration of za which originates from the CC 

conformer of 2. A computer generated perspective view of La is shown in Fig 1. Transannular 

cyclization of the CC conformer was therefore selectively achieved. Selective hydrolysis of 

the 6-acetoxyl group was easily performed by refluxing with Na2C03 (1.1 es) in MeOH-water to 

afford 3_bg) (mp 126-7O) in 99:: yield. Silylation (tBuMe2SiC1, 

THF, t-t, 1 hr) of 3 gave $"' (mp 85-6", 96'-). 

imidarole) and reduction (LiA1H4 

Bromide 3_d, obtained by treatment of 3 with 

PBr3 (in pyr, at OO-+rt), was unstable and therefore immediately converted by reduction with 

LiEt3BH (THF-ether, rt) into $ ') (562 from z). Demaskinq of & (nBu4N'F‘, THF, rt, 24 hr; 
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Lf9' ! mp 94-5", 91:) followed by Collins oxidation yielded (5) bicyclohumulenone (5) (mp 73", 

88%, 30:' from 3, whose nmr and ir spectra wcrc superimposable with those of the natural 

product, isolated from Plagiochila acanthophylla subsp. japonica. 5f) 

Another conformlationally Selective transannular cycliration of2 was performed by treatment 

of 5 with trimethylsilyl trifluoromethanesulfonate '1) (1.3 eq) in tnluene at -20"~-10" for 6 

hr and subsequent desilylation with KF in MeOH at rt for 20 hr. 

was obtained in 80" yield.") 

A mixture of alcohols ?$ and 3 

The lnixture was separated by AgN03 impregnated Silica gel 

chromatography (%a/54 = l/Z). A combination of shift reagent and decoupling experiments at 60 

MHz and NMR spectrum at 270 MHz 13) established the confiquration of olefins .5,a 14) and !$, both 

of which must be derived from the CT conformer of 2. The olefinic alcohol 3 was treated with 

PBr3 (Et20, rt, 10 hr) to give a bromide 3 which Gas reduced without ourification under Birch 

conditions (Na-liq NH3, -78", 30 tmin) to furnish an olefin !jd in 86" yield from !$a. The olefin 

!$ was quantitatively converted to a pair of Stereoisomeric epoxides 2 and kf (mCPBA, CH,C12, 

. -150, 10 min) from which epoxide $ (moving faster on tic) wds separated in 55'; yield. 

Treatment of 3 with LDA afforded an allylic alcohol ,6_ in 68, yield. Finally the allylic 

alcohol was hydrogenated (PtO2, AcOEt, On) to an alcohol 2 (mp 47--ea, 92'4, 8% from z). Spectra 

of the synthetic alcohol $ and the olefin !$j were superimposable respectively with those of 

natural products, africanol and africerie, which were found in the marine animal, Lemnalia 

africana.15) 

In summary, two Structually different cyclohumulanoids have thus been synthesized from 

humulcnc epoxide 2 via conformationally selective trJnSannlJldr cyclization reactions. ,-./- 
Conformational selectivity of the reaction could be rationalized by the different stabilities of 

transition states depending upon the presence (?, -32) or the absence (z-2) of a nucleophile in 

the reaction medium because the epoxide 2 was shown to have same conformation in bet!, the 

solvents namely Ac20 and toluene as revealed by the 
13 

C NMR spectral studies. 
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